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Abstract 

 
The requirement of tetrahedral mesh generation 

algorithm, which is a prerequisite of many soft tissue 
simulation methods, becomes very strict because of the 
real-time requirement of the simulation. Aiming to 
speed up the computation in the simulation, we 
propose a revised Delaunay algorithm which makes a 
good balance of quality of tetrahedra, boundary 
preservation and time complexity, with many improved 
methods. Another mesh algorithm named Space-
Disassembling is also presented in this paper, and a 
comparison of Space-Disassembling, traditional 
Delaunay algorithm and the revised Delaunay 
algorithm is processed based on the simulation 
criteria.  
 
1. Introduction 
 

Finite Element Method, a soft-tissue simulation 
method with high accuracy, becomes very popular in 
biomedical filed, but it is more difficult to meet the 
real-time requirement in virtual reality of medical 
process, because of the time complexity of matrix 
computation in this method. 

In order to improve the computation, the quality of 
tetrahedral mesh of the soft tissue becomes more 
important. After research and comparison of several 
mesh algorithms including Space-Disassembling, 
Delaunay algorithms and Advancing Front Technology 
[1], an Space-Disassembling Algorithm and a revised 
Delaunay algorithm are chosen to realize the 
discretization of FEM because the first one is very 
efficient and leads to good mesh inside the soft tissue, 
while the second one makes a good balance of 
boundary preservation, quality of tetrahedra and time 
complexity. In order to make the Delaunay algorithm 
qualified for the FEM requirements, many improved 
methods including point random disarrangement, radial 
method and visibility check, are designed and 

implemented in the revised Delaunay algorithm to 
improve its performance. 
 
2. Delaunay Algorithms 
 

Delaunay algorithm is the general name of all 
algorithms whose mesh results accord with the 
Delaunay criterion raised by B. Delaunay in 1934, 
which is based on Voronoi diagrams (also known as 
Dirichlet tessellations) [2]. This criterion states that a 
circum-sphere of each simplex in a triangulation 
contains only the n+1 defining points of the simplex (n 
represents the number of dimension of the input data).  
 

 
                   (a)                                                     (b) 
Fig. 1.a. Example of Delaunay core of point P represented in 2 
dimensions 
Fig. 1.b. New mesh could be constructed with the surface of 
Delaunay core and point P. 
 

There is a basic concept in all Delaunay algorithms 
called Delaunay core of point P, which represents a set 
of tetrahedra in the mesh whose circum-spheres 
contain point P (Fig.1.a). According to the Delaunay 
theory, point P and the Delaunay core of this point are 
the part of the mesh which does not meet the Delaunay 
criterion. In order to eliminate this inconsistency, a 
reconstruction of the Delaunay core and the point is 
necessary, for which we employed the point-insertion 
method, one of the most efficient approaches in 
Delaunay algorithms, to break up all the tetrahedra 
inside the Delaunay core, and join the new point and 
the surface of the Delaunay core together to generate a 
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new mesh (Fig.1.b). After this reconstruction, the new 
point has been inserted to the original mesh 
successfully, and the mesh still meets the Delaunay 
criterion. 
 
3. Space-Disassembling Mesh Algorithm 
 

Space-Disassembling Algorithm is an intuitive 
mesh algorithm with a low time complexity [3], which 
could generate very nice mesh inside the object, but 
doesn't perform well on the surface. 
 

     
Fig. 2.  Three categories of cubic elements after bound box cutting. 
 

The first step of this algorithm is cutting the bound 
box of the original object into small cubes, the number 
of which could be described as the granularity of the 
mesh. All of the small cubic elements could be divided 
into three categories: cubes outside the object, cubes 
inside and cubes on the surface (Fig.2). Exterior cubes 
should be abandoned and the remain cubes should be 
cut into five tetrahedra in the similar way which leads 
to nice mesh inside the object, and the cut methods of 
two adjacent cubes should be symmetrical, in order to 
eliminate the creation of stationary points (Fig.3). After 
re-mesh of the boundary tetrahedra, a simple mesh of 
the original object is generated by the Space-
Disassembling Mesh Algorithm. 
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Fig. 3.  Cut methods of two adjacent cubes should be symmetrical, in 
order to eliminate the creation of stationary points. 
 

And another problem of this algorithm is it cannot 
preserve all the boundary information including points 
and triangle facets. It could only preserve the topology 
of the original object in rough. We used this algorithm 
at the beginning of the FEM research, and it worked 
very well when the boundary preservation was not a 
pivotal requirement. However, after the boundary 
preservation and good quality of all tetrahedra become 
more and more important, Delaunay algorithm turns 
out more suitable and effective. 
 
4. Revised Delaunay Algorithm 
 

In order to generate better tetrahedral mesh in FEM, 
we propose a novel Delaunay algorithm with many 
improved steps and methods, which optimize the mesh 
result prominently on the boundary preservation and 
quality of all tetrahedra. The entire process of eight 
steps of this algorithm leads to better mesh compared 
with Space-Disassembling Algorithm and traditional 
Delaunay algorithms separately. 

 
4.1. Surface triangle mesh optimization 
 

If the boundary tetrahedra density and the interior 
tetrahedra density must match each other, or the 
boundary tetrahedra density must be larger than that of 
the interior tetrahedra, considering the deformation of 
the surface should be more obvious, a surface triangle 
mesh optimization should be processed before the 
Delaunay algorithm [4]. 

The optimization is based on the granularity of the 
Delaunay mesh. If the surface triangle mesh is sparse 
while the granularity of the expected mesh is large, 
respectively. A surface triangle subdivision should be 
performed before the Delaunay mesh construction. On 
the other hand, if the surface triangle mesh is dense 
while the granularity of the expected mesh is small, a 
surface triangle simplification should be performed 
before the mesh construction. After this step, the final 
mesh could be well-proportioned on the boundary and 
inside the source object. 

 
4.2. Initial tetrahedral mesh construction 
 

The pivotal part of the revised Delaunay algorithm 
is iteratively inserting new point into current mesh. So 
an initial tetrahedral mesh which contains the input 
object should be constructed first. Considering the 
optimization of the following steps, we choose an 
approach as follow. 

First, the circum-sphere of the object’s bound box, 
which is a cuboid, should be calculated. Then, the 
bound box of the circum-sphere could be calculated, 
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which should be a cube. After that, we mesh the bound 
box of the circum-sphere into five tetrahedra as in the 
Space-Disassembling Algorithm. Then the initial 
tetrahedral mesh which contains the original object is 
constructed completely. 

 
4.3. Presetting interior points generation 
 

In this step, possible points which could be inserted 
into the initial mesh would be prepared. The boundary 
points in the input data should be contained in the 
mesh considering the boundary preservation 
requirement, but only inserting boundary points into 
the initial mesh is far from enough to generate nice 
mesh. In order to make the mesh more regular, points 
inside the original object should be generated as well, 
the method of which is to cut the bound box of the 
circum-sphere which is calculated in the first step into 
smaller cubic elements, as we did in the Space-
Disassembling Algorithm. Then all vertices of the 
cubic elements would be the presetting interior points 
which could be inserted into the mesh in the following 
steps. 

 
4.4. Presetting interior points random 
disarrangement 
 

The presetting interior points generated in the 
second step are the vertices of the cubic elements 
which are all on special positions. According to 
Cavalcanti and Mello [5], points on special positions, 
like more than four points co-sphercity and more than 
three points co-planarity, could cause the failure of the 
algorithm easily. A research about points on special 
positions was processed after we implemented this 
revised Delaunay algorithm. We chose a kidney data 
which contains 458 boundary points as an input. First, 
we turned off this random disarrangement step and 
5551 tetrahedra were generated. Then, we turned on 
this step, and more than 6590 tetrahedra were 
generated based on the same input, which means more 
points could be inserted into the mesh to form more 
tetrahedra after random disarrangement. 

The method to implement this step is very intuitive. 
A random vector with the value about 10-4 based on the 
input data would be added on all presetting interior 
points, which solves the problem of points on special 
positions effectively. 
 
4.5. Interior points generated based on radial 
method 
 

In this step, real interior points would be separated 
from the output of the third step, which contains both 

points inside and outside the source object. The 
method we employed to separate them is called radial 
method which is a classical method to solve this kind 
of problem in two dimensions. 
 

 
Fig. 4.  Radial method in 2 dimensions could record the relative 
position of each section of the radial, which works well in 3 
dimensions too. 
 

The pivotal part of this method is quite 
straightforward. If a radial goes through an object, 
several points of intersection would be generated (Fig. 
4). An assistant variable denoted as Counter with an 
initial value 0 could help to record the relative position 
of each section of the radial. When the radial goes into 
the object from the outside, the Counter variable would 
be increased by 1. When the radial goes from the inside 
of the object to the outside, the Counter variable would 
be decreased by 1. After this process, the Counter 
variable could help us separate all points on the radial. 
In this way, we could separate the points from the 
output of the third step with a radial going across it, 
and then all points outside the object should be deleted. 
All points which would be inserted into the initial 
mesh, including boundary points and interior points 
have been prepared. 

 
4.6. Delaunay mesh construction 
 

In this step, both boundary points and interior points 
would be inserted into the initial mesh iteratively as 
stated above. In this revised Delaunay algorithm, we 
raise some methods to optimize the traditional point-
insertion process, which could reduce the time 
complexity and eliminate the possibility of interactive 
tetrahedra generation effectively. 

For each point to be inserted, the Delaunay core 
should be found first. An intuitive way to get the 
Delaunay core for point P is to go through all 
tetrahedra in the mesh and check whether it meets the 
definition of Delaunay core of point P. This process 
could be very slow, and could cause serious tetrahedra 
overlap problem (Fig. 5.a). The method to generate the 
Delaunay core in the revised algorithm is to find the 
tetrahedron T0 which contains point P first, and then 
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recursively check every tetrahedron which is adjacent 
to T0 by triangle faces whether the circum-sphere of it 
contains point P or not until no more tetrahedra could 
be added into the Delaunay core. 
 

 
Fig. 5. a. (Blue part) Possible result of intuitive Delaunay core 
generation could lead to tetrahedra overlap. 
Fig.5.b. (Yellow part) Possible result of revised Delaunay core 
generation could lead to tetrahedra overlap. 
Fig.5.c (Green part) Possible result of revised Delaunay core 
generation could lead to boundary point lost. 
 

The background grid technology [6] could help find 
a set of tetrahedra which may contain point P 
efficiently. For each tetrahedron in this set, we could 
construct four tetrahedra with the point P and the four 
triangle faces of it. Then a comparison of volume of 
the tetrahedron in the set with the sum of volumes of 
the four tetrahedra could help find the first tetrahedron 
in the Delaunay core of point P. 

Actually, this method of generating Delaunay core 
does not totally meet the Delaunay theory. By 
weakening Delaunay theory, this method helps the 
elimination of time complexity and the possibility of 
tetrahedra overlap distinctively. The topology of the 
Delaunay core of point P should be examined before 
breaking all tetrahedra in it, because bad topology of 
Delaunay core could lead to tetrahedra overlap as well 
(Fig. 5.b) [7]. In order to solve this problem, the 
normal vector of each boundary face of the Delaunay 
core should be calculated. The direction of the vector 
would be defined as positive if it points into the core; 
otherwise, it would be defined as negative. If the point 
P is on the positive side of all boundary faces of the 
Delaunay core, breaking tetrahedra in the core would 
be safe, which means no tetrahedra overlap would be 
caused. If point P is on the negative side of some 
boundary faces, tetrahedra containing this face in the 
Delaunay core should be deleted. Processing this 
method recursively for each boundary face of the core 
would make all tetrahedra in the mesh valid without 
any element overlap, and also could find and eliminate 
those tetrahedra whose volume equal to zero. After this 
method, reconstruction of tetrahedra in the core, which 
is the last thing to do in this step, could be processed as 

stated above. And the problems about the Delaunay 
Cores in Fig.5 could be eliminated, and the result could 
be found in Fig.6 respectively. 

 

 
Fig. 6. a. (Blue part)  Reconstruction result of the intuitive 
generation. 
Fig.6.b. (Yellow part)  Reconstruction result after vision check. 
Fig.6.c (Green part) Reconstruction result which could lead to 
boundary point lost. 

 
4.7. Boundary preservation 
 

In the fifth step of the algorithm, some points may 
be deleted when the tetrahedra of the Delaunay core 
are broken (Fig. 5.c, Fig.6.c). If the points are 
boundary points from the input data, it should be 
recorded and re-inserted into the mesh. 
 

 
Fig. 7.  neighbor-point joining leads to surface topology mistakes of 
the object which could be solved by remove the tetrahedra whose 
center points are outside of the object. 
 

In the point-insertion process, neighbor points 
would be more easily to be joined together, which may 
lead to surface topology mistakes (Fig. 7). To solve 
this problem, we need to process the radial method 
stated above for the geometric center points of all 
tetrahedra to separate them into two categories: 
tetrahedra inside the object and tetrahedra outside of 
the object. All tetrahedra with exterior centers should 
be deleted to preserve the basic surface topology of the 
object. 

 
4.8. Deal with sliver tetrahedra 
 

Sliver tetrahedra, which would cause failure of the 
FEM computation easily, could be formed in the last 
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three steps, especially on the surface of the object. 
Number of sliver tetrahedra is an important part of the 
tetrahedral mesh benchmark, which makes the 
elimination of sliver tetrahedra very necessary. 

The definition of sliver tetrahedra in this algorithm 
is based on the standard deviation (SD) of sides in the 
tetrahedron. First we define a maximum value of sides 
SD as A0, and then calculate the sides SD for each 
tetrahedron. If the SD is greater than A0, the 
tetrahedron should be combined with its neighbor and 
a re-mesh should be generated until all tetrahedra in the 
mesh are not sliver. 
 
5. Experiment 
 

We compared three tetrahedral mesh algorithms, 
including space-disassembling algorithm, traditional 
Delaunay algorithm and the revised Delaunay 
algorithm, based on some pivotal criteria (Table. 1). 
The algorithm chosen to represent traditional Delaunay 
algorithm is vtkDelaunay3D in VTK (Visualization 
Toolkit) [14]. The first input object is a kidney surface 
data containing 458 boundary points and 960 boundary 
faces. The second input object is a breast surface data 
containing 994 boundary points and 2816 boundary 
face. 
 

Table. 1 Comparison of space-disassembling algorithm, traditional 
Delaunay algorithm and revised Delaunay algorithm 

Space 
disassembling 

Traditional 
Delaunay 

Revised 
Delaunay Mesh 

Criteria 
K B K B K B 

Output 
points 431 2065 -- -- 538 1629 

Output 
tetrahedra 1303 7052 2151 7480 2100 7753 

Time 
complex Good Medium Medium 

Sliver 
tetrahedra Medium Medium Good 

Interior 
tetrahedra Good Good Good 

Boundary 
preserve Bad Bad Medium 

 
The first input object is a kidney surface data containing 458 

boundary points and 960 boundary faces. The second input object is 
a breast surface data containing 994 boundary points and 2816 
boundary face.  K stands for kidney, and B is stands for breast. 
 

In Fig.9, a comparison of boundary preservation is 
processed between vtkDelaunay3D and the revised 
Delaunay algorithm. Fig.10 are the mesh results 
generated by the revised Delaunay algorithm of the 
kidney and breast data, and the mesh result generated 
by Space-Disassembling algorithm of the craniofacial 
data. 
 

  
(a)                                                 (b) 

Fig. 8.a  The white part represents the boundary triangles generated 
by vtkDelaunay3D. The red part represents the original boundary 
triangles. 
Fig. 8.b  The white part represents the boundary triangles generated 
by the revised Delaunay algorithm. The red part represents the 
original boundary triangles. 
 

  
(a)                                                  (b) 

Fig. 9.a  The mesh result of the kidney data by the revised Delaunay 
algorithm, the granularity of which is 10. 
Fig. 9.b  The mesh result of the breast data by the revised Delaunay 
algorithm, the granularity of which is 20. 
 

And some soft-tissue deformation programs are 
processed based on these tetrahedral meshes. After 
simulation and analysis, we found good quality 
tetrahedral mesh is a critical prerequisite of these soft-
tissue simulation methods. In FEM, sliver tetrahedra 
could lead to a program failure easily, because when 
the force is distributed on vertices of the tetrahedra, 
sliver tetrahedra could cause stress uneven, which 
makes the matrix computation more difficult and even 
program failure. In Mass-spring model, low quality 
mesh makes the elements iteration very inefficient, and 
could lead to wrong result of the deformation. If 
there’s a force on the vertex with an obtuse angle of a 
sliver tetrahedron, the triangle may flip over and never 
deform back because when it does, the length of the 
spring can be the same as the original length, which 
means reaching a new balance state. And obviously, 
the result is incorrect. In order to eliminate these 
problems in soft-tissue deformation, we need to use 
algorithms which generate tetrahedral mesh with good 
quality. And the revised Delaunay algorithm performs 
very well on these soft-tissue simulation programs. 
 
6. Conclusion 
 

After analysis and comparison the results of the 
experiments, one could found out that tetrahedral mesh 
of soft tissue with good quality is an important pre-
requisite of the soft-tissue simulation methods. So a 
good tetrahedral mesh generation algorithm is very 
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significant in soft-tissue deformation simulation 
programs like craniofacial plastic surgery and breast 
reconstruction plastic surgery. Both of the Space-
Disassembling and revised Delaunay algorithm work 
well in these programs. If the organ is not very spatial 
complicated and boundary preservation is not a main 
requirement, Space-Disassembling algorithm could be 
used. If the quality of all tetrahedra should be as good 
as possible, and the boundary should be preserved, the 
revised Delaunay algorithm could make a very good 
balance among these requirements. 
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